
Elastic Agent:
Ingesting log files, how
hard can it be?
Jan 20, 2026

Denis Rechkunov

Denis
Rechkunov
Principal Software Engineer

https://rdner.de

https://rdner.de

Logs are a foundation of
Observability

Letʼs talk about ingestion of log files
Whatʼs the general idea?

Read a log line Map it to JSON Send it to
Elasticsearch

We need a component
that reads files line by

line.

We need to somehow
convert it to JSON.

We need to use an
Elasticsearch client to
send this JSON to an

index.

Raise your hand if you think
this is easy 📊

while read l
do curl -H"Authorization: ApiKey BASE64_API_KEY" \
 -XPOST localhost:9200/my-index/_doc \
 -HContent-Type:application/json \
 -d"$l"
done < data.ndjson

Nope, itʼs hard.

Wouldn't it be fun to design
it together really quick?

Letʼs split the problem into these 3 parts:

Read a log line Map it to JSON Send it to
Elasticsearch

We need a component
that reads files line by

line.

We need to somehow
convert it to JSON.

We need to use an
Elasticsearch client to
send this JSON to an

index.

Part 1 Read a log line

Our First Approach

read line

read line

File Our program

…

read line

Uh-oh…
Someone restarted our

program 🙄
We sent duplicates after the

restart.

Credit: Heroes of Might and Magic III (videogame)

Offset Tracking

read line

read line

File Our program

…

read line

State storage

offset 123

offset 456

offset 5000

Uh-oh…
Someone added thousands of

files to ingestion 🙄
We need to track multiple files

now.

Credit: Heroes of Might and Magic III (videogame)

Per File Offset Tracking

read line

read line

file1.log

Our program

…

read line

State storage

file1.log, offset 123

file2.log, offset 123

fileN.log, offset 123

file2.log

fileN.log

Files

Scaling Considerations

● State storage:
○ Key-Value disk storage.
○ Efficient writes, e.g. Write-ahead logging WAL) with checkpointing.
○ In-memory state view or direct access to the on-disk storage if itʼs fast enough.

● Reading files:
○ OS has a file handle limit per process, sometimes as low as 256 Mac.
○ Need to constantly close files on idle and re-open files on change.

How to optimize for thousands of files

https://en.wikipedia.org/wiki/Write-ahead_logging

Uh-oh…
The log rotation moved

“file1.logˮ to “old-file1.logˮ
🙄

We sent duplicates again.

Credit: Heroes of Might and Magic III (videogame)

Log Rotation

● Throughout the lifetime of the file we need to have a stable identifier.
● Files can be:

○ renamed/moved
○ truncated
○ compressed to Gzip
○ removed

● We cannot rely on its filename as a stable identifier.

Challenges to pick a stable file identifier

File Identification

● Itʼs kind of a coordinate where the file is, not its name.
● For Unix-like systems, itʼs the stat system call and a combination of:

○ device number (st_dev)
○ inode (ino_t)

● For Windows, itʼs the file handler and a combination of:
○ dwVolumeSerialNumber
○ nFileIndexLow
○ nFileIndexHigh

More details with examples at https://www.elastic.co/docs/reference/beats/filebeat/file-identity

Based on file system metadata

https://www.man7.org/linux/man-pages/man3/stat.3type.html
https://www.man7.org/linux/man-pages/man7/inode.7.html
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/ns-fileapi-by_handle_file_information
https://www.elastic.co/docs/reference/beats/filebeat/file-identity

File Identification

● The content is what makes this file unique, nothing else affects the identity.
● Two main approaches:

○ Hash from the first N bytes – ingestion delay until the size is at least N bytes.
○ Variable length match until different – ingest right away, delay a file if collisions occur

until it grows different.

More details with examples at https://www.elastic.co/docs/reference/beats/filebeat/file-identity

Based on the content

https://www.elastic.co/docs/reference/beats/filebeat/file-identity

File Identification

● Not every file system implements inode very well.
Examples: NFS, FUSE filesystems.

● inode number gets reused for deleted files.
Examples: containerized and virtualized environments.

● The device ID/number is unstable.
Examples: when using the Linux LVM Logical Volume Manager), device numbers are
allocated dynamically at module load.
(refer to Persistent Device Numbers in the Red Hat Enterprise Linux documentation)

Why is file system metadata unreliable Unix)?

https://en.wikipedia.org/wiki/Logical_Volume_Manager_%28Linux%29
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/logical_volume_manager_administration/lv#persistent_numbers

File Identification

● Files need to be different in content (most of log lines have timestamps, and itʼs enough).
● If the beginning of the file changed, itʼs fair to assume itʼs a new file.
● However, we have to delay ingestion of some files until we can create a unique stable

identifier for them.

Better use the content-based identifiers

Per File Offset Tracking with ID

read line

read line

file1.log

Our program

…

read line

State storage

file_id1, offset 123

file_id2, offset 123

file_idN, offset 123

file2.log

fileN.log

Files

Part 2 Map it to JSON

A log line to a JSON document

● Some logs are already in JSON, nothing to do.
● Some logs are not JSON and they need to be converted

e.g. with Grok patterns (not to be confused with Grok AI🤦).
● 🎉

Straight-forward

https://github.com/elastic/go-grok

Uh-oh…
Users wish to process and
alter the data in dozens of

different ways.

Credit: Heroes of Might and Magic III (videogame)

Processors

● We introduce a processing pipeline (aka input) with dozens of processors.
○ add_field
○ drop_field
○ rename
○ decode
○ … etc.

● Every processor must be:
○ lightweight – itʼs a hot code path
○ atomic – make backups before making changes
○ conditional – e.g. when/if/then/else

Requirements

https://www.elastic.co/docs/reference/beats/filebeat/defining-processors

Uh-oh…
Users wish to process the
same file differently by 2

different inputs.

Credit: Heroes of Might and Magic III (videogame)

Offset Tracking with File ID and Input ID

read line

read line

file1.log

Our program

…

read line

State storage
input_id:file_id1, offset 123

file2.log

fileN.log

Files

input_id:file_id2, offset 123

input_id:file_idN, offset 123

Part 3 Send it to
Elasticsearch

Sending data to Elasticsearch

● Use the official client, e.g. for Go.
● Send each JSON document to Elasticsearch.
● 🎉

Straight-forward

read line
fileN.log

input_id:file_idN, offset 123

JSON

https://github.com/elastic/go-elasticsearch

Uh-oh…
Load spikes caused data loss.

The back pressure didnʼt let
us send data quick enough.

We need a queue.

Credit: Heroes of Might and Magic III (videogame)

Sending to Elasticsearch

● Implement a queue: memory or disk.
● Combine JSON documents in batches and use the bulk API.
● Track acknowledgements for documents.
● Store offset after a document is acknowledged.
● Do exponential back-offs and retries.

How to gain resilience

https://github.com/elastic/go-elasticsearch/tree/main/_examples/bulk

Uh-oh…
Users noticed that logs have

established formats.
They want us to have presets.

Credit: Heroes of Might and Magic III (videogame)

Bonus Part: Integrations

Integrations

● Manage the catalog of integration packages
● Version them
● Configure them

Logs have established formats, we need to:

More at https://www.elastic.co/integrations

https://www.elastic.co/integrations

Uh-oh…
Users want centralized

management for all of this
across hundreds of machines.

Credit: Heroes of Might and Magic III (videogame)

Fleet Management

● Every ingestion program is configured and supervised by a locally running service – agent.
● A centralized server manages these agents.
● They can be re-configured with integration packages in runtime.
● Agents report their metrics and state back to the Fleet server.

Centralized management across hundreds of machines

More at https://www.elastic.co/docs/reference/fleet

https://www.elastic.co/docs/reference/fleet

How do we solve it at Elastic?

fileN.log

Elastic Agent
Elastic Agent

Elastic Agent
Elastic Agent

State
Storage

Centralized Fleet
Management

Integration
Management

Multiple Agents

Multiple
Integrations per

agent

Fleet Server

Package
Registry

Uh-oh…
Users want open standards

and no vendor-locking.

Credit: Heroes of Might and Magic III (videogame)

Elastic Agent as OpenTelemetry Collector

● Elastic Agent is also an OTel Collector.
● Beats (ingesting software running under the agent) are also OTel receivers.
● OTel components can be running side by side with Elastic-specific components.
● Elastic is actively contributing to OpenTelemetry.
● Using open standards makes it future-proof and removes vendor-locking.

Elastic Distribution of OpenTelemetry EDOT

More at https://www.elastic.co/docs/reference/edot-collector

https://www.elastic.co/docs/reference/edot-collector
https://opentelemetry.io/docs/collector/components/receiver/
https://opentelemetry.io/docs/concepts/components/
https://www.elastic.co/docs/reference/edot-collector

Elastic Contributions to OpenTelemetry
As of January 2026

Source https://opentelemetry.devstats.cncf.io/d/5/companies-table

https://opentelemetry.devstats.cncf.io/d/5/companies-table

I guess the point is…

Credit: Part of a series on The Legend of Zelda. (modified)

THE AGENT.

Thank you!My contacts Slides

